Tutorial: How to configure maven surefire plugin work with JUnit 5

Recently, I had a task to migrate the unit tests in our project from ‘JUnit 4’ to ‘JUnit 5’. As many developers, I researched a bit to learn about the major differences between the two versions and drafted a plan for smooth migration.

From the first look, I thought my only job was refactoring the tests and probably some helper classes. But, I was wrong! I ran into a configuration issue with the maven-surefire-plugin configuration.

In this post, I will be sharing the encountered issue and its fix. Note that I will not cover the detailed steps of how to migrate from ‘JUnit 4’ to ‘JUnit 5’.

Tests run: 0!

We, as many other developers, use the maven-surefire-plugin to run our tests during the test phase of maven’s build lifecycle. We rely heavily on this plugin because it fails the build when one of the tests is broken!

With JUnit4, everything was working perfectly! But after the migration, the plugin was always reporting that not tests are run:

'Tests run: 0, Failures: 0, Errors: 0, Skipped: 0 ...'!

Calculator Class

For the purpose of this blog, let us assume we want to build a Calculator. For now, we only have the ‘add‘ method implemented as shown below.

Calculator.java

public final class Calculator {
    public static int add(int firstNumber, int secondNumber) {
        return firstNumber + secondNumber;
    }
}

JUnit 4 Code

junit4

I will start with the ‘JUnit 4’ version of the code.

pom.xml

We need to depend on the junit artifacts and add the plugin for the surefire. Here is the required pom file:

<build>
    <plugins>
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-surefire-plugin</artifactId>
            <version>2.19.1</version>
        </plugin>
    </plugins>
</build>

<dependencies>
    <dependency>
        <groupId>junit</groupId>
        <artifactId>junit</artifactId>
        <version>4.12</version>
        <scope>test</scope>
    </dependency>
</dependencies>

CalculatorTest.java

In the test class, we have one test that asserts our method is doing the correct addition.

import org.junit.Assert;
import org.junit.Test;

public class CalculatorTest {
    @Test
    public void
    our_calculator_should_add_2_numbers() {
        Assert.assertEquals(5, Calculator.add(2, 3));
    }
}

Build Output

Now, if we try to run ‘mvn clean install‘ on the above pom file we get the below output:

-------------------------------------------------------
T E S T S
-------------------------------------------------------
Running CalculatorTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.037 sec - in CalculatorTest

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

****
[INFO] --------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] --------------------------------------------------

Everything works perfectly!

JUnit 5 Code

junit5

It’s time to migrate our code to ‘JUnit 5’!

pom.xml

The first step is changing our dependencies in the pom file.

Some significant changes were applied to the ‘Junit 5’ dependency metadata. The framework functionalities have been split into several artifacts:

  • junit-jupiter-api
  • junit-jupiter-engine
  • junit-platform-suite-api
  • junit-jupiter-params
  • junit-platform-surefire-provider

For this simple example, it is enough to depend on ‘junit-jupiter-engine‘ & ‘junit-platform-surefire-provider‘.

So, our pom becomes:

<build>
    <plugins>
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-surefire-plugin</artifactId>
            <version>2.19.1</version>
        </plugin>
    </plugins>
</build>

<dependencies>
    <dependency>
        <groupId>org.junit.jupiter</groupId>
        <artifactId>junit-jupiter-engine</artifactId>
        <version>5.0.0</version>
        <scope>test</scope>
    </dependency>
    <dependency>
        <groupId>org.junit.platform</groupId>
        <artifactId>junit-platform-surefire-provider</artifactId>
        <version>1.0.0</version>
     </dependency>
</dependencies>

P.S. Check ‘JUnit 5 User Guide‘ if you are interested in more details on the ‘JUnit 5’ artifacts

CalculatorTest.java

A good portion of the code in tests has to be changed to migrate to ‘JUnit 5’. Again, I am not going to cover those changes in this blog.

For the simple test we have written before, we need to change two things:

  1. Change the import statements
  2. Change the assertion call
import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Test;

public class CalculatorTest {
    @Test
    public void
    our_calculator_should_add_2_numbers() {
        Assertions.assertEquals(5, Calculator.add(2, 3));
    }
}

Build Output

Although the ‘mvn clean install‘ command is still returning a ‘BUILD SUCCESS‘ message, it is actually not running any tests which make the whole build process suspicious.

This is our issue!

-------------------------------------------------------
T E S T S
-------------------------------------------------------
Running CalculatorTest
Tests run: 0, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.001 sec - in CalculatorTest

Results :

Tests run: 0, Failures: 0, Errors: 0, Skipped: 0

****
[INFO] ------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------

The Fix

The fix of this problem is simple, need to modify the build section in our pom to add the 2 dependencies to the ‘maven-surefire-plugin‘  plugin section as shown below.

By doing so, we forced the maven-surefire-plugin to use the latest JUnit artifacts and thus run the JUnit 5 tests.

<build>
    <plugins>
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-surefire-plugin</artifactId>
            <version>2.19.1</version>
            <dependencies>
                <dependency>
                    <groupId>org.junit.platform</groupId>
                    <artifactId>junit-platform-surefire-provider</artifactId>
                    <version>1.0.0</version>
                </dependency>
                <dependency>
                    <groupId>org.junit.jupiter</groupId>
                    <artifactId>junit-jupiter-engine</artifactId>
                    <version>5.0.0</version>
                </dependency>
            </dependencies>
        </plugin>
    </plugins>
</build>

Running ‘mvn clean install‘ will return the correct output now:

-------------------------------------------------------
T E S T S
-------------------------------------------------------
Running CalculatorTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.044 sec - in CalculatorTest

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

****
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------

 

I hope this blog post would save you some time when migrating to ‘JUnit 5’!

Good luck 🙂

Using H2 In-Memory to test your DAL

How should we test the Data Access Layer code?

Many developers ask that question. Similar to the other layers of your system, it should be fully tested to prevent unexpected and random behavior in production. There are many ways to achieve that, among of which are mocks or in-memory database.

The problem with mocks is that instead of testing the validity of your SQL queries (syntax and execution), you will only be testing the validity of the system’s flow. On the other hand, using the in-memory database will validate both! That is why I prefer it over mocking. But, you should keep in mind that the SQL syntax might differ from one database engine to another.

In this blog, I will be giving an example of using “H2 In-Memory” in unit tests. The code of this example is available on my GitHub account.

H2 In-Memory in Action

So, let us see H2 in action 🙂

For the sake of this blog, I will assume we want to test three SQL operations on the table “Members” having the following model:

MEMBERS
ID      | NAME        |
INTEGER | VARCHAR(64) |

The SQL operations to be covered in this blog are:

  1. Create Table
  2. Insert (batch of prepared statements)
  3. Select *

Code Explanation

The example will be based on five files (pom.xml, Member.java, SqlRepository.java, H2Repository.java and H2MembersRepositoryTest). In this section, I will give a brief explanation of each file.

Pom.xml (Maven Dependencies):

First, let us modify our pom file (as shown below) to make our project depend on two projects:

  1. com.h2database: Using this dependency, Maven will take care of downloading the h2 jar file we will be referencing in our tests.
  2. Junit: a unit testing framework for Java
<dependencies>
    <dependency>
        <groupId>com.h2database</groupId>
        <artifactId>h2</artifactId>
        <version>1.4.191</version>
    </dependency>
    <dependency>
        <groupId>junit</groupId>
        <artifactId>junit</artifactId>
        <version>4.11</version>
    </dependency>
</dependencies>

Member.java:

This class represents a Member record. It consists of a factory method that returns an instance of the Member class and two getter methods to return the values of the Id and Name fields.

package dal;

import java.util.Objects;

public final class Member {
    private final int id;
    private final String name;

    private Member(int id, String name) {
        this.id = id;
        this.name = name;
    }

    public static Member aMember(int id, String name) {
        return new Member(id, name);
    }

    public int id() {
        return id;
    }

    public String name() {
        return name;
    }

    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;
        Member member = (Member) o;
        return id == member.id &&
                Objects.equals(name, member.name);
    }

    @Override
    public int hashCode() {
        return Objects.hash(id, name);
    }
}

SqlRepository.java

In this class, we establish a connection to our database. What is important in this class is that we pass the connection string as a parameter to the constructor thus making our code unbounded to any specific database engine (MySql, H2, Sybase, Oracle, etc.). This will make writing our tests much easier!

The class consists of:

  1. Constructor: initializes an instance of SQL Connection using the connection string passed as parameter
  2. Three public methods:
    1. createTable: executes an update query to create the”MEMBERS” table.
    2. allMemebers: executes a select query and returns the found records in a list of Members.
    3. insertMembers: takes a list of “Member” as a parameter and inserts the values into the “MEMBERS” table.
package dal;

import dal.Member;

import java.sql.*;
import java.util.ArrayList;
import java.util.List;

public class SqlRepository {

    protected final Connection connection;
    private static final String CREATE_MEMBERS = "CREATE TABLE MEMBERS(ID INTEGER, NAME VARCHAR(64))";
    private static final String SELECT_MEMBERS = "SELECT * FROM MEMBERS";
    private static final String INSERT_MEMBERS = "INSERT INTO MEMBERS(ID, NAME) VALUES(?, ?)";

    public SqlRepository(String connectionString) throws SQLException {
        connection = DriverManager.getConnection(connectionString);
    }

    public boolean createTable() throws SQLException {
        Statement createStatement = connection.createStatement();
        return createStatement.execute(CREATE_MEMBERS);
    }

    public List<Member> allMembers() throws SQLException {
        List<Member> allMembers = new ArrayList<>();
        Statement selectStatement = connection.createStatement();
        ResultSet membersResultSet = selectStatement.executeQuery(SELECT_MEMBERS);
        while (membersResultSet.next()) {
            allMembers.add(Member.aMember(membersResultSet.getInt(1), membersResultSet.getString(2)));
        }
        return allMembers;
    }

    public void insertMembers(List<Member> members) throws SQLException {
        final PreparedStatement insertMembers = connection.prepareStatement(INSERT_MEMBERS);
        members.forEach(member -> insertMember(member, insertMembers));
        insertMembers.executeBatch();
    }

    private void insertMember(Member member, PreparedStatement insertMembers) {
        try {
            insertMembers.setInt(1, member.id());
            insertMembers.setString(2, member.name());
            insertMembers.addBatch();
        } catch (SQLException e) {
            throw new UnsupportedOperationException(e.getMessage());
        }
    }
}

H2Repository.java

I added this class under “Test Sources Root” because it is only used by the tests.

As you notice, it extends the SqlRepository class implemented previously. Thus, we don’t have a lot to implement here. The only method added is a new method “closeConnection” that drops all the existing tables from the database.

You might wonder why would we need that since we are using an In-Memory database. That might be true for this simple example, but it will be a necessity when running multiple tests classes. That is because, in Java, all the tests are run in the same JVM which means that the H2 instance initialized in the first test will be shared with the next test classes. This approach might lead to an unexpected behavior when using the same tables in the different test classes.

package dal;

import java.sql.SQLException;

public final class H2Repository extends SqlRepository {
    public H2Repository(String connectionString) throws SQLException {
        super(connectionString);
    }

    public void closeConnection() throws SQLException {
        connection.createStatement().execute("DROP ALL OBJECTS");
    }
}

H2MembersRepositoryTest.java

This is the simple test class! Our single test (it_correctly_inserts_members_to_a_database) is invoking the three methods we implemented before (createTable, insertMember and allMembers). If any of those methods is badly written our test would fail.

package dal;

import org.junit.AfterClass;
import org.junit.BeforeClass;
import org.junit.Test;

import java.sql.SQLException;
import java.util.ArrayList;
import java.util.List;

import static dal.Member.aMember;
import static org.fest.assertions.Assertions.assertThat;

public class H2MembersRepositoryTest {

    private static final String H2_CONNECTION_STRING = "jdbc:h2:mem:test";
    private static final List<Member> MEMBERS = new ArrayList<>(10);
    private static H2Repository h2Repository;

    @BeforeClass
    public static void
    setup_database() throws SQLException {
        h2Repository = new H2Repository(H2_CONNECTION_STRING);
        initializeMembers();
    }

    @Test
    public void
    it_correctly_inserts_members_to_a_database() throws SQLException {
        h2Repository.createTable();
        h2Repository.insertMembers(MEMBERS);

        assertThat(h2Repository.allMembers()).isEqualTo(MEMBERS);
    }

    private static void initializeMembers() {
        for (int index = 0; index < 10; index++) {
            MEMBERS.add(aMember(index, "Name_" + index));
        }
    }

    @AfterClass
    public static void
    tear_down_database() throws SQLException {
        h2Repository.closeConnection();
    }
}

TearDown

If you can test your DAL, you can test anything! (I just came up with this ;))

Keep the tests going!

References:

  1. H2-Database Engine
  2. H2-Maven
  3. JUnit Maven
  4. GitHub